
Eur. Phys. J. B 28, 173–183 (2002)
DOI: 10.1140/epjb/e2002-00219-5 THE EUROPEAN

PHYSICAL JOURNAL B

Derivation of effective spin models from a three band model
for CuO2-planes

E. Müller-Hartmann and A. Reischla

Institute of Theoretical Physics, University of Cologne, Zülpicher Str 77, 50937 Cologne, Germany

Received 8 June 2001 / Received in final form 28 May 2002
Published online 19 July 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. The derivation of effective spin models describing the low energy magnetic properties of undoped
CuO2-planes is reinvestigated. Our study aims at a quantitative determination of the parameters of effective
spin models from those of a multi-band model and is supposed to be relevant to the analysis of recent
improved experimental data on the spin wave spectrum of La2CuO4. Starting from a conventional three-
band model we determine the exchange couplings for the nearest and next-nearest neighbor Heisenberg
exchange as well as for 4- and 6-spin exchange terms via a direct perturbation expansion up to 12th (14th
for the 4-spin term) order with respect to the copper-oxygen hopping tpd. Our results demonstrate that
this perturbation expansion does not converge for hopping parameters of the relevant size. Well behaved
extrapolations of the couplings are derived, however, in terms of Padé approximants. In order to check the
significance of these results from the direct perturbation expansion we employ the Zhang-Rice reformulation
of the three band model in terms of hybridizing oxygen Wannier orbitals centered at copper ion sites. In
the Wannier notation the perturbation expansion is reorganized by an exact treatment of the strong site-
diagonal hybridization. The perturbation expansion with respect to the weak intersite hybridizations is
calculated up to 4th order for the Heisenberg coupling and up to 6th order for the 4-spin coupling. It shows
excellent convergence and the results are in agreement with the Padé approximants of the direct expansion.
The relevance of the 4-spin coupling as the leading correction to the nearest neighbor Heisenberg model is
emphasized.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 75.30.Et Exchange and superexchange
interactions – 75.10.Jm Quantized spin models

1 Introduction

After the discovery of the high-Tc superconducting ox-
ides [1] it soon became clear that a minimum model for
describing their electronic properties had to contain at
least three bands [2] derived from the copper crystal field
state 3dx2−y2 and from oxygen 2px and 2py orbitals [3].
In a seminal paper Zhang and Rice showed [4] that the
low energy physics of the three-band model is in fact con-
tained in an effective single-band model, the type of model
which was envisaged initially by Anderson [5].

The work presented here is concerned with a reinves-
tigation of the derivation of effective single-band models
from three-band models for CuO2-planes. The present pa-
per will be confined to the study of undoped CuO2-planes
where the effective models contain spin degrees of freedom
only. Effective low energy models are derived from high en-
ergy parent models via perturbative expansions [6]. The
focus of this work is placed on how to obtain high precision
coupling constants for the effective spin models and what
are the leading corrections to the familiar nearest neigh-
bor Heisenberg model. For the system of strongly corre-
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lated electrons considered here the copper-oxygen hopping
tpd is the expansion parameter of choice. The expansion
in powers of tpd is, however, not straightforward due to its
rather small radius of convergence. Therefore, expansions
beyond the leading order are required for obtaining reli-
able results. This is probably the reason why in existing
derivations of the magnetic Hamiltonian of CuO2-planes
the couplings are usually off by a factor of up to 2 [7,8].
The dominant term in the effective Hamiltonian is the
Heisenberg nearest neighbor exchange obtained in fourth
order which is substantially corrected by higher order con-
tributions which we will present up to twelfth order. In
eighth order ring exchange processes start to contribute
four-spin terms to the effective Hamiltonian which turn
out to be not at all small [9]. Our results are consistent
with the recent interpretation [10] of improved experi-
mental data on the spin wave spectrum of La2CuO4 in
terms of sizable four-spin exchange terms [11]. In compar-
ison to these four-spin terms second and third neighbor
Heisenberg terms which also first appear in eighth order
turn out to be rather tiny. We have calculated all these
terms up to twelfth order (four-spin term up to fourteenth
order). It is evident from the results of these series expan-
sions that physically relevant values of tpd are larger than
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the radius of convergence. We find, however, that Padé ap-
proximants of these series expansions provide consistent
extrapolations to the range of physically relevant model
parameters.

There is an alternative approach to the perturbative
treatment of three band models which shows a much bet-
ter behavior of convergence and which we have also ap-
plied to obtain an independent check of the significance
of the Padé approximants derived from the direct expan-
sion. This approach has been introduced in the paper of
Zhang and Rice on the three band model in which this
model was reformulated in terms of hybridizing oxygen
Wannier orbitals centered at the copper ion sites [4]. In
this notation the hopping Hamiltonian contains a large
site-diagonal hybridization t0 which is easily treated ex-
actly for each copper ion site and small intersite hybridiza-
tions which are then treated safely in a perturbative fash-
ion. Along these lines Zhang and Rice achieved not only
a clever rearrangement of the tpd perturbation series, but
also a particularly transparent formulation of the physics
of doped CuO2-planes in terms of “spin” and “hole” states
the latter of which are known as Zhang-Rice singlets. In
the effective low energy model (“t-J model”) obtained
this way neighboring “spins” experience an exchange in-
teraction J and “holes” interchange their position with
neighboring “spins” via a hopping parameter t [12]. We
will show that the leading contribution to the nearest
neighbor Heisenberg exchange obtained in second order
in the intersite hopping is sufficient to reproduce the ma-
jor features found from the direct expansion up to realistic
values of tpd, but is not sufficient for perfect agreement.
Guided by sum rules for the hopping amplitudes in the
Wannier representation we will then demonstrate how the
agreement is systematically improved by including correc-
tions of third and fourth order in the intersite hopping.
The four-spin (up to sixth order) and further neighbor
Heisenberg exchange terms will also be discussed in this
context.

The paper is organized as follows. In the following sec-
tion the three band model used in this work is briefly re-
viewed together with its transformation into the Wannier
representation. Section 3 describes the principles of the
perturbative derivation of effective Hamiltonians as we
will use it. Section 4 is devoted to the direct expansion
with respect to tpd and Section 5 to the expansion in the
Wannier representation. The results are summarized and
conclusions are drawn in connection with the experimental
evidence in Section 6.

2 The three-band model

In this section we will briefly present the three-band
model [2] from which our investigation is going to start
and fix the notations used. For the purpose of this paper
which is focusing on the feasibility of high precision deter-
mination of the parameters of effective spin models we will
use a minimum three-band model with the Hamiltonian

H = Hε +HU +Hpd (1)

where the first term

Hε =
∑
l,σ

[
εdd
†
l,σdl,σ + εp(p

†
x,l+nx/2,σ

px,l+nx/2,σ

+ p†y,l+ny/2,σ
py,l+ny/2,σ

)
]

(2)

describes the energies of the 3d- and 2p-holes involved, the
second term

HU = U
∑

l

d†l,↑dl,↑d
†
l,↓dl,↓ (3)

describes the Coulomb repulsion of holes on the Cu3+ ions
and the third term

Hpd = tpd
∑
l,σ

[
d†l,σ(px,l+nx/2,σ

+ py,l+ny/2,σ
− px,l−nx/2,σ

− py,l−ny/2,σ
) + h.c.

]
. (4)

describes the hopping of holes between 3d- and neigh-
boring 2p-sites. Copper 3dx2−y2-orbitals are placed on a
square lattice in the (x, y)-plane which is spanned by unit
vectors nx and ny and the vertices of which are labeled
by the integer vector l. Oxygen 2px- and 2py-orbitals are
placed at the center of x- and y-bonds, respectively, be-
tween neighboring lattice sites.

Typical parameters for the three-band model (1) being
used to model CuO2-planes are [13,14]

∆pd
.= εp − εd = 3.6 eV, U = 8 eV, tpd = 1.3 eV. (5)

For a direct expansion with respect to the hopping param-
eter tpd the Hamiltonian (1) is decomposed into

H = Hp
0 + V p with Hp

0 = Hε +HU and V p = Hpd.
(6)

Although the hopping amplitude tpd is smaller than the
charge transfer energy ∆pd and than the Coulomb en-
ergy U it turns out that a direct expansion of the pa-
rameters of an effective low energy model with respect
to tpd, i.e. an expansion in powers of V p, does not work
for the parameter set (5). We will demonstrate this later
explicitly and we will estimate the radius of convergence
of such a direct expansion as tcpd ≈ U/16 = 0.5 eV. We
will therefore work out this expansion to higher orders
and will extract useful information from this expansion
via Padé approximants.

Zhang and Rice [4] found an elegant way to reorganize
the perturbation expansion by reformulating the three-
band model in terms of hybridizing oxygen Wannier or-
bitals centered at the copper ion sites. The reformulated
model is obtained after transforming the hopping term
into momentum space representation using the Fourier
transformed operators

d†l,σ =
1√
L

∑
k∈BZ

e−ikld†k,σ (7)
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and

p†α,l+nα/2,σ
=

1√
L

∑
k∈BZ

e−ik(l+nα/2)p†α,k,σ (α = x, y),

(8)

where L denotes the number of unit cells. With the form
factor

f(k) .= 2

√
sin2 kx

2
+ sin2 ky

2
= 2

√
1− cos kx + cos ky

2
(9)

and the normalized hybridizing Wannier orbital in mo-
mentum space representation

wk,σ
.= 2i

(
sin

kx
2
px,k,σ + sin

ky
2
py,k,σ

)
/f(k) (10)

the hopping term reads

Hpd = tpd
∑
k,σ

f(k)(d†k,σwk,σ + w†k,σdk,σ). (11)

Applying the Fourier transform (7) to the Wannier op-
erators w†k,σ mutually orthogonal real space Wannier or-
bitals w†l,σ centered at the copper sites are obtained. In
terms of these the hopping Hamiltonian finally takes the
form

Hpd = tpd
∑

l,m,σ

[
Tl−m d†l,σwm,σ + h.c.

]
, (12)

where the Fourier coefficients

TR
.=

1
L

∑
k

f(k) eikR =
∫
BZ

d2k
(2π)2

f(k) eikR (13)

of the form factor (9) have the full symmetry of the square
lattice. Numerical values of these coefficients are given in
Table 1.

The coefficients TR satisfy the sum rules

sl
.=
∑
m

TmTl−m =
〈
f2(k)eikl

〉
k

=

4 (l = (0, 0))
−1 (l = (±1, 0)or (0,±1))
0 (else).

(14)

which we are going to use later. Obviously, the site-diagonal
amplitude T(0,0) is much larger than all the other ampli-
tudes and satisfies by itself the sum rule s(0,0) = 4 already
to 91.8%. The amplitudes to the 4 first neighbors are al-
most 7 times smaller than T(0,0) and including them the
sum rule s(0,0) = 4 is missed by only 0.35%. The ampli-
tudes to further neighbors are much smaller again. One
can show that in the limit of large distances the ampli-
tudes drop asymptotically like

TR ∼
−1

2πR3
(R→∞). (15)

Table 1. Numerical values for TR.

R TR

(0, 0) 1.916183
(±1, 0),(0,±1) −0.280186

(±1,±1) −0.047013
(±2, 0),(0,±2) −0.027450

(±2,±1),(±1,±2) −0.013703

To write the Hamiltonian (2) also in terms of Wannier
states non-hybridizing 2p-orbitals orthogonal to the
Wannier orbitals w have to be introduced. In momentum
space representation they are given by

vk,σ
.= 2i

(
sin

ky
2
px,k,σ − sin

kx
2
py,k,σ

)
/f(k) (16)

and since the 2p-basis sets (px, py) and (w, v) are unitarily
equivalent one obtains

Hε =
∑
l,σ

[
εdd
†
l,σdl,σ + εp(w

†
l,σwl,σ + v†l,σvl,σ)

]
. (17)

The Wannier representation in (12) and (17) allows a de-
composition of the total Hamiltonian (1) into

H = Hw
0 + V w (18)

where a major part of the hopping term (4) is incorporated
in the unperturbed Hamiltonian. Using the shorthand no-
tation

t0
.= T(0,0)tpd ≈ 1.916 tpd (19)

the unperturbed Hamiltonian is chosen as [4]

Hw
0 =

∑
l

hl

hl =
∑
σ

[
εdd
†
l,σdl,σ + εpw

†
l,σwl,σ + t0(d†l,σwl,σ

+ w†l,σdl,σ)
]

+ Ud†l,↑dl,↑d
†
l,↓dl,↓. (20)

The non-hybridizing orbital v can be ignored altogether
in the minimum three-band model considered here since it
is always completely filled. The local Hamiltonians hl act
independently at each site l. They are easily diagonalized
exactly. The perturbative part of the total Hamiltonian
is then given by the intersite hopping terms in Wannier
representation

V w = tpd

l6=m∑
l,m,σ

Tl−m

[
d†l,σwm,σ + w†l,σdm,σ

]
(21)

which are so small that they can safely be treated pertur-
batively for model parameters as given by (5). The sep-
aration of energy scales between Hw

0 and V w achieved
through the use of the Wannier representation is so sub-
stantial that it is hard to understand why a controversy
about the scenario proposed by Zhang and Rice [4] arose
early on [15–19] which was still quoted as unsettled in the
review by Dagotto [12]. Leading order perturbative calcu-
lations using the Wannier representation were performed
by many authors (see, e.g., [20–26]).
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3 Perturbative derivation of effective
Hamiltonians

The perturbative derivation of effective Hamiltonians for
correlated electron systems has a long history the early
stages of which were summarized by Takahashi in 1977 [6].
In this paper Takahashi presents a particularly transpar-
ent description of the method and gives an explicit so-
lution for the effective Hamiltonian to arbitrary order.
We will briefly recall Takahashi’s approach here, because
we are going to perform the perturbation expansions in
this paper using his formulation and because we wish to
avoid controversies about the proper use of the method
like in [27,28].

It is assumed that the total Hamiltonian of a system
is decomposed into

H = H0 + V. (22)

In the case of interest H0 has a degenerate subspace U0 of
ground states with energy E0. On switching on the per-
turbation V continuously the subspace U0 evolves con-
tinuously into the subspace U of the corresponding low
energy eigenspace of H. Takahashi presents an explicit
perturbative formula to all orders in V for an isometric
linear transformation Γ : U0 → U describing the mapping
of U0 onto U . In terms of Γ the effective Hamiltonian is
then given by

Heff = Γ †HΓ. (23)

It acts in the subspace U0 of unperturbed eigenstates
of H0 and has the same spectrum as the perturbed
Hamiltonian H. In view of the explicit perturbation se-
ries of Γ it is a pure problem of book-keeping to set up
the perturbation series for Heff to any required order. In
terms of the projection operator P0 onto the ground state
subspace U0 and the resolvent operator

S
.= − 1− P0

H0 −E0
(24)

the full perturbation expansion up to fourth order is
given by

Heff = E0P0 + P0VP0 + P0VSVP0

+ P0VSVSVP0 −
1
2
P0VP0VS

2VP0

− 1
2
P0VS

2VP0VP0 + P0VSVSVSVP0

− 1
2
P0VS

2VP0VSVP0 −
1
2
P0VSVP0VS

2VP0

+
1
2
P0VP0VP0VS

3VP0 +
1
2
P0VS

3VP0VP0VP0

− 1
2
P0VP0VS

2VSVP0 −
1
2
P0VSVS

2VP0VP0

− 1
2
P0VP0VSVS

2VP0 −
1
2
P0VS

2VSVP0VP0. (25)

For the purposes of the calculations in this paper we had
to list this expansion up to twelfth order. The number

of terms in the series grows exponentially with the order.
To twelfth order the perturbation series contains 363721
terms.

For useful applications of the formal series of Heff the
unperturbed Hamiltonian H0 has to be easily diagonal-
ized such that matrix elements of the resolvent (24) can
be calculated explicitly. In this paper we will apply the
perturbation expansion to the two Hamiltonian decompo-
sitions (6) and (18) were this condition on H0 is satis-
fied. We also will confine the analysis to undoped systems
which implies that all terms in Heff containing P0V P0

don’t contribute. This reduces the number of twelfth or-
der terms in Heff to 12341. In the direct expansion based
on (6) ground states can only be connected by an even
number of hopping processes such that all terms with any
odd number of V between two P0 don’t contribute. This
reduces the number of twelfth order terms to 3180. For
the Wannier decomposition (18) our analysis will be con-
fined to sixth order. In this case, of the terms given in (25)
only the second order term, the first third order term and
the first three fourth order terms will contribute and up to
sixth order 30 terms have to be taken into account. Notice
that in the Wannier decomposition (18) odd order terms
do contribute since Hw

0 mixes d- and w-orbitals.

4 Direct perturbation expansion

In this section we are going to discuss the direct expansion
with respect to tpd on the basis of the decomposition (6).
In the undoped case that we are considering here the sub-
space of ground states U0 of the unperturbed Hamiltonian
Hp

0 contains all states without any p-holes and with a sin-
gle d-hole on each copper site. The effective Hamiltonian
acting on U0 is thus a pure spin Hamiltonian acting on
the spins S = 1/2 of the d-sites. Due to the symmetry
properties of the three band model (1) this Hamiltonian
has got to be invariant under global spin rotations and
under the space group of the square lattice. Only terms
with an even number of spins are possible due to time re-
versal symmetry. The excited states of Hp

0 are very simple
and the excitation energies contain a Coulomb energy U
for each d-site with two holes and a charge transfer en-
ergy ∆pd for each p-hole. For a contribution of order n to
the effective Hamiltonian one has to consider all sets of n
hopping processes each of which defines a certain cluster of
sites involved. Due to the linked cluster theorem (which
is bound to hold to keep the effective Hamiltonian ex-
tensive) only connected clusters are known to contribute.
It is therefore sufficient to evaluate the various orders of
Heff on certain finite clusters. We have implemented the
purely symbolic evaluation of the series expansion with a
C++ program.

For simplicity we will disregard any constant energy
shift in Heff since we want to focus on the effective spin
Hamiltonian. The leading term in Heff is then a fourth
order nearest neighbor Heisenberg exchange J1 S1 ·S2 with
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the well known exchange coupling (see e.g. [20])

J
(4)
1,dir =

2 t4pd
∆2
pd

( 4
2∆pd

+
2
U

)
=

4 t4pd (U +∆pd)
U ∆3

pd

· (26)

In order to determine this coupling it is sufficient to cal-
culate the amplitude of a spin flip process on a three-
site cluster consisting of two neighboring d-sites and the
p-site in between. In view of the identity S1 · S2 =
Sz1S

z
2 + 1

2 (S+
1 S
−
2 + S−1 S

+
2 ) the coupling is given by twice

the spin flip amplitude.
In sixth order processes the six additional p-sites adja-

cent to the two d-sites can be visited by a hole. Therefore
a nine site cluster would be sufficient to calculate J (6)

1,dir.
Since in each individual exchange process at most one of
the additional p-sites is visited the actual calculation can
be confined to clusters of up to no more than four sites.
Each of the six four-site clusters gives the same contri-
bution to the sixth order coupling. In one such contri-
bution either all four sites or only the three sites of the
fourth order cluster will be involved in the exchange pro-
cess. Therefore, the sixth order spin flip amplitude is given
by six times the spin flip amplitude of the four-site clus-
ter minus 5 times the spin flip amplitude of the three-site
cluster. This type of reasoning would be dispensable in the
sixth order case for which it was examplified here, but it is
absolutely essential to make the higher order calculations
feasible. It allows to reduce the maximum cluster size for
the calculation of the nearest neighbor exchange from 17
to 8 in eighth order, from 31 to 9 in tenth order and from
43 to 12 in twelfth order.

In eighth order ring exchange processes on an eight-
site plaquette visiting four d-sites are possible. These pro-
cesses produce four-spin exchange terms in Heff . In cases
where multi-spin terms are present the fewer-spin ex-
change terms can be inferred in the following way. Partial
traces (i.e. traces over some of the spins) of any multi-
spin term vanish. By forming the trace over some of the
spins belonging to a cluster all exchange terms containing
these spins are therefore projected out. Applying this rea-
soning to the eight-site plaquette one obtains the two-spin
exchange of a pair of spins by averaging over all configura-
tions of the other spins contained in the plaquette. From
time reversal invariance and hermiticity of Heff one can
infer that the amplitude of a spin flip process remains un-
changed if all unflipped spins of a cluster are inverted.
This allows to reduce by a factor of 2 the number of con-
figurations needed for the averaging.

Along the lines described above we have calculated the
nearest neighbor exchange coupling J1,dir up to twelfth
order in tpd. The full formula of the twelfth order re-
sult is given by equation (A.1) in Appendix A. Figure 1
shows how the ratio J1,dir/J

(4)
1,dir varies with increasing tpd

if the sixth, eighth, tenth and twelfth order terms are in-
cluded (see the thick lines in Fig. 1). It is obvious from
this plot that for the physically relevant values of tpd as
given in (5) J1 is smaller than simple estimates from J

(4)
1,dir

would suggest, but it is also obvious that the radius of
convergence of the direct perturbation series considered
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J1,dir

J
(4)
1,dir

6 th order
8 th order
10 th order
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1−1 DlogP
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U=8 eV, ∆pd=3.6 eV

Fig. 1. Variation of J1,dir/J
(4)
1,dir with tpd.

here is much smaller than tpd = 1.3 eV. The direct se-
ries determines J1 accurately only up to tpd ≈ 0.5 eV.
Extrapolations beyond the radius of convergence can be
obtained, however, via Padé approximants of the series
for J1,dir/J

(4)
1,dir. We denote as m-n Padé the approximant

with an mth order numerator polynomial and an nth or-
der denominator polynomial in the variable x = t2pd. We
have also constructed extrapolations via analogous Padé
approximants for the logarithmic derivative of J1,dir/J

(4)
1,dir

which we denote by m-n DlogPadé. The 1-1 and 2-2 Padés
and the 1-1 DlogPadé shown by the thin lines in Figure 1
demonstrate the excellent convergence of this extrapola-
tion procedure. The 0-1, 1-3 and 1-2 Padés and the 1-2
and 2-1 DlogPadés are not shown because they all differ
from the 2-2 Padé by less than 3% for tpd ≤ 1.3 eV and less
than 4% for tpd ≤ 1.5 eV. From this observation we derive
the estimate that they determine the nearest neighbor ex-
change coupling with an accuracy of better than 4%. Note
the substantial reduction of the coupling in the range of
physical interest, J1 = 0.33 J(4)

1,dir for tpd = 1.3 eV, in com-
parison to the lowest order result.

The four-spin exchange terms which first appear in
eighth order can be inferred from considering processes in
which all four spins are flipped. Let us label the spins
on the four d-sites of a square plaquette in cyclic or-
der by numbers 1 to 4. There are 3 independent four-
spin invariants, (S1 · S2)(S3 · S4), (S2 · S3)(S4 · S1) and
(S1 ·S3)(S2 ·S4) from which the four-spin exchange terms
have to be formed. Due to the square point symmetry
of our model the first two invariants always get the same
exchange coupling in the effective Hamiltonian. This com-
mon coupling is given by twice the amplitude of the pro-
cess which flips all spins of the initial state |1↑, 2↓, 3↑, 4↓〉,
since the third invariant doesn’t contribute to this pro-
cess. The exchange coupling of the third invariant can be
inferred from considering an alternative four-spin flip pro-
cess starting from the initial state |1 ↑, 2 ↓, 3 ↓, 4 ↑〉. The
sum of the couplings of the first invariant and the third
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invariant is given by four times the amplitude of this pro-
cess. It turns out that this amplitude vanishes in eighth
and tenth order. This implies that up to tenth order the
four-spin exchange term has the form

J�
[
(S1 · S2)(S3 · S4) + (S2 · S3)(S4 · S1)

− (S1 · S3)(S2 · S4)
]

(27)

in analogy to what is known for the one band Hubbard
model in fourth order [6].

The vanishing of the |1 ↑, 2 ↓, 3 ↓, 4 ↑〉 spin flip process
up to tenth order can be easily understood as resulting
from the linked cluster theorem, because for these pro-
cesses the plaquette (1, 2, 3, 4) decomposes into two un-
linked clusters, one of them containing the d-sites 1 and 2,
the other containing sites 3 and 4. In twelfth order there
are processes linking these two clusters and producing an-
other four-spin term

J× (S1 · S3)(S2 · S4) (28)

in addition to (27). It has to be noted that in twelfth or-
der clusters containing 6 d-sites are created which produce
six-spin terms in the effective Hamiltonian. In the calcula-
tion of the four-spin terms these six-spin terms have to be
properly eliminated by the averaging procedure described
above.

The eighth order coupling constant of the four-spin
term (27) is found to be

J
(8)
�,dir =

80 t8pd (U +∆pd) (U2 + U ∆pd +∆2
pd)

U3∆7
pd

· (29)

Corrections up to fourteenth order are shown by equa-
tion (A.2) in Appendix A together with the leading or-
der contribution for J× in equation (A.3). The variation
of J�,dir/J

(8)
�,dir with increasing tpd is shown in Figure 2.

Here, the 0-3 Padé (not shown) and the 1-2 and the

 

 

-

-

-

Fig. 3. Variation of J2,dir/J
(8)
2,dir with tpd.

2-1 Padés as well as the 1-1 DlogPadé seem to provide
a rather accurate estimate with an uncertainty of about
±6% for tpd = 1.3 eV and an uncertainty of about ±15%
for tpd = 1.5 eV. For tpd = 1.3 eV the coupling J� is about
10 times smaller than suggested by the leading order term.
We will consider the 1-1 DlogPadé the most probable es-
timate of J�,dir/J

(8)
�,dir.

The leading contributions to second neighbor
Heisenberg exchange terms like J2 S(0,0) · S(1,1) and
to third neighbor Heisenberg exchange terms like
J3 S(0,0) · S(0,2) are also obtained in eighth order. These
couplings are given by

J
(8)
2,dir =

4 t8pd
(

11U3 + 4U2∆pd + 2U ∆2
pd +∆3

pd

)
U3∆7

pd

(30)

and

J
(8)
3,dir =

4 t8pd
(

3U3 + 2U2∆pd + 2U ∆2
pd +∆3

pd

)
U3∆7

pd

, (31)

respectively. Corrections to these leading order expres-
sions which we have calculated to twelfth order are given
by equations (A.4, A.5) in Appendix A.

Figures 3 and 4 show the variation of J2,dir/J
(8)
2,dir and

J3,dir/J
(8)
3,dir, respectively, with increasing tpd. The radii of

convergence appear to be even smaller than in the case
of J1. The 1-1 Padé in Figure 3 might indicate that J2

changes sign slightly below tpd = 1 eV, but the scattering
of the various approximants doesn’t allow definite conclu-
sions on a change of sign. Since the 0-1 DlogPadé (not
shown in Fig. 3) coincides to high precision with the
0-2 Padé we will consider this approximant as the most
probable estimate for J2. The 0-2 Padé for J3 shown in
Figure 4 turns upwards and has a pole at tpd ≈ 2.1 eV.
The other three approximants shown appear to behave
consistently and we will consider the 0-1 DlogPadé as the
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Fig. 4. Variation of J3,dir/J
(8)
3,dir with tpd.

most probable estimate for J3. Altogether, the Padé ap-
proximants for J2 and J3 scatter much more than those
for J1 and J� and provide less accurate estimates for J2

and J3. We do, however, learn from these extrapolations
that for tpd = 1.3 eV both J2 and J3 also are reduced sub-
stantially in comparison to the leading order results (30)
and (31), J2 probably by a factor of as much as 10 and J3

probably by a factor of 5. As we will see later J2 and J3 are
so small in absolute size that their accurate determination
is less urgent for practical purposes.

To describe the six-spin term resulting from twelfth or-
der ring exchange processes on a double plaquette we label
the six spins involved cyclically by numbers 1 to 6. Since
the oxygen ion at the center of the double plaquette is not
visited in twelfth order the six-spin term has the full sym-
metry of the hexagon formed by the six spins. The 15 in-
dependent invariants obtained by all pairings of the six
spins into three scalar products [29] group into the 5 op-
erators with hexagonal symmetry O1 to O5 given by equa-
tion (A.6) in Appendix A. With the same type of argu-
ments which led to (27) we conclude that the twelfth (and
fourteenth) order six-spin term has the form

J@A(O1 +O2 −O3 +O4 −O5). (32)

The exchange coupling J
(12)
@A given by equation (A.7) in

Appendix A was calculated from ring exchange processes
which flip all spins of the state |1↑, 2↓, 3↑, 4↓, 5↑, 6↓〉.

For a comparison of the relative sizes of the various
couplings we first show in Figure 5 the leading perturba-
tive contributions of all couplings determined, in units of
J

(4)
1,dir. In the range of physically relevant model parame-

ters the four-spin coupling J� is by far the largest cor-
rection to the nearest neighbor two-spin coupling J1. The
second and third neighbor Heisenberg couplings J2 and
J3 are much smaller and are in fact comparable to the
six-spin coupling J@A. This scenario agrees with what is
known from perturbation expansions for the single band

 

Fig. 5. Comparison of the leading order terms of the various
couplings.

 

 

Fig. 6. Comparison of the best Padé approximants.

Hubbard model [6,28] and from cluster calculations for
the three band model [9].

A quantitative comparison of the best approximants
for the various couplings with J1 (represented by its
2-2 Padé) is shown in Figure 6 where we have denoted
the m − n Padé for the coupling Ji by Ji [m,n]. For the
model parameters (5), J� is almost one order of mag-
nitude smaller than J1 and the couplings J2 and J3 are
almost another order of magnitude smaller. The four-spin
coupling J� therefore has to be considered an important
modification of the simple nearest neighbor Heisenberg
model, whereas the second and third neighbor Heisenberg
couplings J2 and J3 (as well as the six-spin coupling J@A)
may be ignored as correction at the level of about 3%.

5 Expansion in the Wannier representation

In this section we are going to discuss the alterna-
tive perturbation expansion based on the decomposi-
tion (18) of the three band Hamiltonian. The unper-
turbed Hamiltonian (20) consists of independent local
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Hamiltonians hl for each site which are easily diagonal-
ized. In the one hole sector the local Hamiltonian has
two S = 1/2 eigenstates where mutually orthogonal lin-
ear combinations of d-hole and w-hole orbitals are occu-
pied. The two hole sector contains a non-hybridized S = 1
triplet and three hybridized singlets the lowest one of
which is the Zhang-Rice singlet. In the three hole sec-
tor again two S = 1/2 doublets are found. The four hole
sector and the zero hole sector each contain one trivial
S = 0 state. The lower doublet in the one hole sector acts
as the local ground state doublet of the undoped system.
All the other states will show up as intermediate excited
states at sufficiently high orders of the expansion with re-
spect to the perturbation (21). We have diagonalized the
local Hamiltonian numerically. A simple analytic formula
cannot be obtained in the general case since for the three
singlets in the two hole sector a (3×3)-matrix has to be
diagonalized. Simple analytic expressions for the solution
in this sector would be available only in the symmetric
case ∆pd = U/2. The perturbation expansion with respect
to (21) was performed using a combination of symbolic
and numerical routines.

It is instructive to analyse the radius of convergence
tcpd of the local Hamiltonian hl which does depend on tpd
via (19). This radius of convergence can be determined
from studying the branch points of the eigenvalues of the
local Hamiltonian in the complex tpd-plane. Without going
into any details we wish to summarize this analysis here
by stating that tcpd = 0.469 eV for the values of U and ∆pd

given in (5). This value agrees well with the values esti-
mated from the Padé approximants. This is not surprising
since the expansion with respect to the small perturba-
tion (21) is expected to converge well and should not much
modify tcpd as defined above from the local Hamiltonian.

In what follows we will plot the variation of the vari-
ous coupling constants with the hopping tpd in analogy to
the presentations in the previous figures by measuring all
couplings in units of their lowest order term in the direct
expansion (if not otherwise stated). Figure 7 shows our re-
sults for the nearest neighbor exchange J1,w. In the present
context the leading contribution to J1,w is obtained from
the simple second order hopping process described by the
term P0VSVP0 of (25). This second order contribution is
depicted by the thick dotted line in Figure 7. It is satisfy-
ing that this simple second order result reproduces quite
nicely the decrease of J1/J

(4)
1,dir with increasing tpd as given

by the Padé approximants of Figure 1. On the other hand,
there is, however, a systematic deviation in the overall
size of the coupling; even for small tpd the coupling J(2)

1,w

is too large by about 15%. The discrepancy at small tpd
is largely reduced by taking into account the third order
terms derived from P0VSVSVP0 and, finally, J(4)

1,w is in
satisfying agreement with the 2-2 Padé of the direct ex-
pansion. The deviation of J(2)

1,w from J
(4)
1,dir for small tpd is

explained quantitatively by re-expanding J
(2)
1,w to second

order with respect to t0. Referring to (19) we obtain

J
(2)
1,w ∼ (2T(0,0)T(1,0))2J

(4)
1,dir (tpd → 0) (33)

 

-

Fig. 7. Variation of J1,w/J
(4)
1,dir with tpd.

which explains the 15% deviation because
(2T(0,0)T(1,0))2 = 1.153. Since J(4)

1,w collects all fourth or-

der terms it has to coincide with J (4)
1,dir after re-expanding

it to t4pd. How this happens becomes particularly clear if
one looks at the sum rule s(1,0) of (14). This sum rule
states that 2T(0,0)T(1,0) +r(1,0) = −1 if we denote by r(1,0)

the sum of all terms in s(1,0) (infinitely many) which
don’t contain T(0,0). Squaring this sum rule we obtain the
relation

(2T(0,0)T(1,0))2 + 2(2T(0,0)T(1,0))r(1,0) + r2
(1,0) = 1 (34)

from which we can read off the contributions of various
orders of the Wannier expansion to J

(4)
1,dir in the limit of

small tpd. The first term represents the contribution of
J

(2)
1,w discussed above. The second term contains only one

factor of T(0,0) and results from third order terms in V w

which due to r(1,0) = 0.073775 exhaust the relation (34)
to 1− r2

(1,0) = 0.994557; this explains why J (3)
1,w is slightly

smaller than J
(4)
1,dir in the limit of small tpd (see Fig. 7).

Finally, the term r2
(1,0) comes from fourth order terms in

V w which contribute only about 0.5% for small tpd but
change sign and get more important as tpd increases.

In our calculation of third and fourth order contri-
butions to J1,w we have made extensive use of the sum
rule s(1,0). In third order terms the exchange path for a
spin flip process involves an arbitrary third copper ion site
whose spin is not flipped. The sum of the spin flip ampli-
tudes over all these third sites contains a lattice sum which
is simply r(1,0). The calculation of the fourth order is more
involved since one has to discriminate between spin flip
processes which don’t visit another site and those which
visit one or two more sites. The lattice sums appearing
in this order cannot be completely determined from sum
rules, but sum rules considerably simplify their calcula-
tion. Four-spin terms which here appear in fourth order
are eliminated by averaging as described in the previous
section.
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Fig. 8. Variation of J�,w/J
(8)

�,dir
with tpd.

Results for the four-spin coupling J�,w are shown in
Figure 8. The leading fourth order contribution again
nicely reproduces qualitatively the decrease with increas-
ing tpd known from Figure 2. After the above discus-
sion the deviation observed in the small tpd limit is not
surprising. In fact, a quantitative understanding of this
deviation follows from looking at the fourth power of
the s(1,0) sum rule: (2T(0,0)T(1,0) + r(1,0))4 = 1. With
(2T(0,0)T(1,0))4 = 1.329 we understand why J

(4)
�,w is

about 33% too large for small tpd. The substantial re-
duction of the deviation by the fifth order contribu-
tions are also understood quantitatively from the identity
(2T(0,0)T(1,0))4+4(2T(0,0)T(1,0))3r(1,0) = 0.964 (see Fig. 8).
Including the sixth order terms we find the almost negli-
gible deviation of (2T(0,0)T(1,0))4 + 4(2T(0,0)T(1,0))3r(1,0) +
6(2T(0,0)T(1,0))2r2

(1,0) = 1.0017 and the overall agreement
with the 1-1 DlogPadé is quite satisfying.

The analysis of the second and third neighbor ex-
change J2 and J3 is more complicated in the Wannier rep-
resentation since there are low order contributions which
have to be cancelled completely by higher order terms
before results of any significance emerge. We therefore
show these couplings in Figures 9 and 10 not in units of
their eighth order counterparts from the direct expansion
but in units of J(4)

1,dir. It is quite obvious that for any lat-

tice vector l there is a second order contribution J
(2)
l,w to

the Heisenberg coupling between two spins separated by l
which in analogy to (33) behaves like

J
(2)
l,w ∼ (2T(0,0)Tl)2J

(4)
1,dir (tpd → 0). (35)

The cancellation of this contribution by higher order terms
is understood by invoking the sum rule 2T(0,0)Tl + rl = 0
for further neighbors which squared gives the relation

(2T(0,0)Tl)2 + 2(2T(0,0)Tl)rl + r2
l = 0. (36)

The numbers (2T(0,0)T(1,1))2 = 0.0325 and
(2T(0,0)T(2,0))2 = 0.0111 coincide perfectly with the
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Fig. 9. Variation of J2,w/J
(4)
1,dir with tpd.
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Fig. 10. Variation of J3,w/J
(4)
1,dir with tpd.

behavior of J
(2)
2,w and J

(2)
3,w for small tpd as shown in

Figures 9 and 10. We also understand from (36) why the
inclusion of the third order doesn’t reduce the deviation
from 0 but just changes its sign. In fourth order Figure 9
shows that in agreement with (36) the terms proportional
to t4pd in J2,w vanish. This is, however, only a partial
solution of the cancellation problem since there are still
terms proportional to t6pd which according to Figure 9
even have the wrong sign and cancellation of which would
only be achieved by extending the V w expansion to sixth
order. For tpd > 0.8 eV the third and fourth order results
shown in Figures 9 and 10 at least have the right sign
and the same order of magnitude as the Padé estimates
from the previous section. We have to conclude that the
accurate determination of the further neighbor couplings
J2 and J3 in the Wannier representation would be very
demanding. This points at definite limitations of this
approach.
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6 Conclusions

In the present paper we have discussed the derivation of
high precision effective spin Hamiltonians for the low en-
ergy sector of a three band model for CuO2-planes. By
two methods we have demonstrated that it is possible to
overcome the convergence problems of the tpd perturba-
tion series. Using the direct expansion with respect to
tpd we have derived precise values for the most impor-
tant couplings via Padé approximants. The direct expan-
sion has the advantage of a particularly simple unper-
turbed Hamiltonian and a very nicely localized pertur-
bative Hamiltonian which makes high order symbolic ex-
pansions feasible. Using the Wannier representation we
have confirmed the results from the direct expansion
by a method with much better convergence properties.
The expansion in the Wannier representation is, how-
ever, rendered more difficult by a more complicated unper-
turbed Hamiltonian and a less well localized perturbative
Hamiltonian and by the necessity of a non-symbolic (i.e.
numerical) series expansion. We have also shown that for
precise values of the coupling constants the leading orders
of the Wannier expansion are not sufficient.

The work in the present paper was confined to the
most rudimentary three band model since our main goal
was to demonstrate the feasibility of the derivation of ac-
curate effective Hamiltonians. Nevertheless we will use our
results here for a fit of the couplings J1 = 151.9 meV and
J�/J1 = 0.24 extracted recently from a fit to the exper-
imental dispersion of La2CuO4 [11] using self consistent
spin-wave theory [10]. Assuming the typical (though some-
what arbitrary) model parameters U = 8 eV and ∆pd =
3.6 eV from (5) we obtain from the value J1 = 151.9 meV
the estimate 1.422 eV ≤ tpd ≤ 1.454 eV for the hopping
parameter of the minimum model showing an uncertainty
in tpd of 2% due to the uncertainty of our Padé extrapo-
lations. With tpd in this range our estimate for J� results
in 0.19 ≤ J�/J1 ≤ 0.25 which is in good agreement with
the result from [10].

For proper applications to cuprate materials this work
will have to be extended to more realistic three band
models including, in particular, a direct oxygen-oxygen
hopping tpp [13,14]. The relevance of four-spin exchange
has been stressed also for the two-leg ladder system
La6Ca8Cu24O41 [30] to which the analysis presented here
can be applied as well.

The authors gratefully acknowledge useful discussions with
Christian Knetter and Kai Schmidt. This work was performed
within a research project supported by the German-Israeli
Foundation.

Appendix A

This Appendix contains the more voluminous formulae
from the direct expansion of Section 4. These formulae can
be easily used to derive the Padé approximants discussed
in Section 4.

With (26) the Taylor series for the nearest neighbor
exchange coupling is

J1,dir = J
(4)
1,dir

[
1− t2pd

4 (5U + 2∆pd)
∆2
pd (U +∆pd)

+t4pd
801U3 + 164U2∆pd − 24U ∆2

pd − 12∆3
pd

2U2∆4
pd (U +∆pd)

−t6pd

(
8505U4 + 9602U3∆pd + 908U2∆2

pd

U2∆6
pd (U +∆pd)

2

−
240U ∆3

pd + 48∆4
pd

U2 ∆6
pd (U +∆pd)

2

)
+t8pd(758199U7 + 1587453U6∆pd

+890808U5∆2
pd + 52603U4∆3

pd

−6611U3∆4
pd + 4566U2∆5

pd

+2559U ∆6
pd + 483∆7

pd)/

(4U4∆8
pd (U +∆pd)

3) +O(t10
pd)
]
. (A.1)

The series for the four-spin coupling with the leading con-
tribution (29) is given by

J�,dir = J
(8)
�,dir

[
1− t2pd

4
∆2
pd (U +∆pd)

×

(
11U3 + 14U2∆pd + 8U ∆2

pd + 2∆3
pd

)
(
U2 + U ∆pd +∆2

pd

)
+ t4pd(56569U7 + 161892U6∆pd + 168480U5∆2

pd

+ 76092U4∆3
pd + 9096U3∆4

pd

− 7008U2∆5
pd − 3960U ∆6

pd − 792∆7
pd)/

(40U2∆4
pd (U +∆pd)3 (U2 + U ∆pd +∆2

pd))

− t6pd(410565U8 + 1487797U7∆pd

+ 2034672U6∆2
pd + 1264452U5∆3

pd

+ 296152U4∆4
pd − 48240U3∆5

pd − 49264U2∆6
pd

− 13464U ∆7
pd − 1584∆8

pd)/(10U2∆6
pd

× (U +∆pd)4 (U2 + U ∆pd +∆2
pd)) +O(t8pd)

]
.

(A.2)

The leading contribution to the four-spin coupling (28) is

J
(12)
× = 2 t12

pd

(
(489U7 + 1016U6∆pd − 72U5∆2

pd

− 2232U4∆3
pd − 3392U3∆4

pd − 2784U2∆5
pd

− 1280U ∆6
pd − 256∆7

pd)
)
/
(
U5∆11

pd (U +∆pd)2
)
.

(A.3)
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With (30) and (31) the series for the second and third
neighbor two-spin couplings are given by

J2,dir= J
(8)
2,dir

[
1−

t2pd
4

∆2
pd (U +∆pd)

×
(142U4+169U3∆pd+36U2∆2

pd+10U∆3
pd+2∆4

pd)
(11U3 + 4U2∆pd + 2U ∆2

pd +∆3
pd)

+ t4pd
(
82083U7 + 171784U6∆pd + 99154U5∆2

pd

+ 10848U4∆3
pd + 1420U3∆4

pd + 290U2∆5
pd

+ 120U ∆6
pd + 24∆7

pd

)
/
(
4U2∆4

pd (U +∆pd)2

× (11U3 + 4U2∆pd + 2U ∆2
pd +∆3

pd)
)

+O(t6pd)
]

(A.4)

and

J3,dir= J
(8)
3,dir

[
1−

t2pd
2

∆2
pd (U +∆pd)

×
(72U4+94U3∆pd+39U2∆2

pd+20U∆3
pd+4∆4

pd)
(3U3 + 2U2∆pd + 2U ∆2

pd +∆3
pd)

+ t4pd
(
47947U7 + 111156U6∆pd + 90704U5∆2

pd

+ 43130U4∆3
pd + 21424U3∆4

pd + 8174U2∆5
pd

+ 2632U ∆6
pd + 440∆7

pd

)
/
(
8U2∆4

pd (U +∆pd)2

× (3U3 + 2U2∆pd + 2U ∆2
pd +∆3

pd)
)

+O(t6pd)
]
.

(A.5)

The 5 six-spin invariants for a hexagonal plaquette are

O1 = (S1 · S2)(S3 · S4)(S5 · S6)
+(S2 · S3)(S4 · S5)(S6 · S1)

O2 = (S1 · S4)(S2 · S6)(S3 · S5)
+(S2 · S5)(S3 · S1)(S4 · S6)
+(S3 · S6)(S4 · S2)(S5 · S1)

O3 = (S1 · S4)(S2 · S5)(S3 · S6)
O4 = (S1 · S2)(S3 · S6)(S4 · S5)

+(S2 · S3)(S4 · S1)(S5 · S6)
+(S3 · S4)(S5 · S2)(S6 · S1)

O5 = (S1 · S2)(S3 · S5)(S4 · S6)
+(S2 · S3)(S4 · S6)(S5 · S1)
+(S3 · S4)(S5 · S1)(S6 · S2)
+(S4 · S5)(S6 · S2)(S1 · S3)
+(S5 · S6)(S1 · S3)(S2 · S4)
+(S6 · S1)(S2 · S4)(S3 · S5). (A.6)

The leading contribution to the six-spin coupling in equa-
tion (32) is found to be

J
(12)
@A = 336 t12

pd

×
(U+∆pd)(3U4+6U3∆pd + 8U2∆2

pd+6U∆3
pd+3∆4

pd)
U5∆11

pd

·

(A.7)
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